Modeling the BlueGene/L 64K Node Network - Statistical Simulator

Jim Pool, Thomas Sterling, Dan Meiron, Sharon Brunett, Maciej Brodowicz, Tom Gottschalk, Paul Springer, Ed Upchurch

> California Institute of Technology and NASA Jet Propulsion Laboratory BlueGene/L Workshop 13 August 2002

Objectives

- Understand implications of BG/L network architecture & Drive results from real-world ASCI applications
- Develop **statistical models** of: applications, processors as message generators, and the network
 - BUT keep:
 - application communications distribution
 - Network contention as function of load/size adaptive routing
- Represent 64K Nodes Explicitly in Statistical Model
- Create trace analysis tools to characterize applications

Strategy

- Develop "Rapid Prototype" Statistical Model Using Commercial Graphical Modeling Tool (SES/workbench)
- Implement 64K node statistical network simulator parallel version
 - SPEEDES Paul Springer
 - FPGA Maciej Brodowicz
 - Our Own Tom Gottschalk
- Perform application driven experiments (bottleneck/sensitivity analyses)
- Validate against cycle-level simulations for small systems

Applications

RM3D/AMR3D

- Science: compressible turbulence
- Uniform & Adaptive Mesh

Magnetic Hydro Dynamics (MHD)

- Science: magnetic reconnection in two dimensions solves hydrodynamics and resistive Maxwell's equations
- Data exchanges nearest neighbor non blocking send and receive
- global reduction, MPI_Allreduce of the minimum time step

Gyrokinetic Toroidal Code (GTC)

- Science: GTC is a Particle in Cell (PIC) calculates micro-turbulence in a tokamak
- a few MPI_allreduce, almost all MPI calls are nearest neighbor
- communications done in a circular fashion, and using MPI_sendrecv

• Quantum Monte Carlo

- Science: obtains electronic structure of molecules and materials
- manager MPI_isend msgs directly to each worker to gather statistics
- Workers check the incoming buffer with a polling, MPI_Iprobe; MPI_Reduce for further statistics gathering

SPEEDES Background

- Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES)
- Parallel discrete event simulation framework, developed at JPL by Jeff Steinman, early 90's
- Used for large-scale military simulations SPAWAR: 100 node SMP to simulate 1,000,000 objects
- Optimistic approach, "breathing time warp"
- Uses time windows to prevent runaway objects from triggering excessive rollbacks
- Uses shared memory for message passing on SMP computers

SPEEDES Performance Test

- Ported SPEEDES to JPL's 128-processor SGI 2000
- Ran approx 1/10th scale performance test
- 10 simulation seconds
- Randomly chosen destination
- Total elapsed time: 15 seconds
- Speedup Approx 8x over single node

Hardware-Accelerated Network Simulator

- **FPGA** fast simulation of 8x8x8 torus network (scalable to larger networks)
- We have 2 Xilinx XCV600E FPGAs (Nallatech UK)
 - 985,000 system gates each
 - Nearly 300kbits of dual-ported on-chip memory
- Over 1 billion events/sec at 50 MHZ clock rate
 - SES/workbench prototype 100,000 events/sec on 700 MHZ PC
- Routing and buffering algorithms translated directly to FPGA logic
- Each of 512 emulated communication nodes can use up to 50 logic cells and 1kbit of memory (queuing)
- Could act as a testbed for various communication scenarios (with test datasets supplied on the fly by the driver code running on a host PC)

Prototype Model

- SES/workbench
 - Torus network topology parameterized (x,y,z)
 - Flexible workload generator
 - Thread message- packet level
 - Can handle 8x8x8 memory limitations
 - Most 8x8x8 runs minutes depends on workload

Global bgl_hardware_flow

Global bgl_sys_software_flow

 ${\bf Global\,bgl_functional_flow}$

Place holder until software structure/measurements known

Reference systemsw_time to compute_processor[src_x][src_y][src_z]

Task Definition

- Scalable Simulation Of Messages For Large Parallel Machines
- Open/Unknown: Adequate Fidelity
 - Seek Guidance In Usual Cost/Benefits/Fidelity Trade Space

Design Assumptions

- Highest Priority
 - Adequate Packet Modeling
 - Routing Procedures (Cut Through, etc.)
- Approximations, First Pass
 - Statistical, "Semi-Correlated" Message Generation
 - Receipt: Timing Statistics, Nothing More
 - Collectives (e.g., Barriers) Ignored

Basic Simulation Formalism

- (Distributed) DIS, Messages Among Actors
- Messages: User or Packet-Level Data Representations
- "Actors": Message Producers/Consumers
 - Apps Processor: Generation
 - Outgoing Packetizer
 - Routers
 - Packet Collectors, Message Receipt

Basic Framework

Event (Message)

Simulation Objects

Simulation Objects II

- Applications Objects
 - Message Sources, Statistical
- Packetizers
 - Message <=>Packet Translator
 - Applications-Communications Interface
- Communications (Router)
 - Packet Communications. FIFO, Cut-Through, Tokens, etc. As Needed

Scalable Extensions

"Soft" Event Queue Management Across Simulator Nodes: Time Delayed/Shifted Packets Across Boundaries

Scalable Extensions II

- Messages "Through" Boundary Accumulated Into Time-Stamped Set
- Periodic, Scheduled Swaps At Boundaries
 - New Events Within Simulation Queue
- Swapped Messages To Simulation Queues
 - Time Stamps Sifted By Accumulation Time
 - Adequate For "Near-Steady-State" Modeling

Current Activities

- Framework
 - Development/Testing Of Distributed DIS Approximation With Toy Actors
- Router Modeling
 - Abstract Lessons/Fidelity From WorkBench Studies
- Message Generation
 - Statistical Representations Of Traces
 - Types, Sizes, Hop-Counts For Messages
 - Sequence Correlations Within Single Processor